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Abstract. Weyl–Underhill–Emmrich (WUE) quantization and its generalization are considered.
It is shown that an axiomatic definition of the Stratonovich–Weyl quantizer leads to severe
difficulties. Quantization on the cylinder within the WUE formalism is discussed.

1. Introduction

Deformation quantization introduced in 1978 by Bayenet al [1] now seems to be one of the
most interesting parts of mathematical physics, especially after the works of Fedosov [2, 3]
and Kontsevich [4] were published. From the physical point of view the important question
is whether the mathematical formalism of deformation quantization describes physical reality.
One way to deal with this problem is to look for the ‘natural’ generalization of the Weyl–
Wigner–Moyal formalism to a Riemannian configuration space and then compare this with the
general theory of deformation quantization. Perhaps the most natural generalization of the Weyl
quantization rule [1, 5–9] was given by Underhill [10] and Emmrich [11]. In section 2 we deal
with the Weyl–Underhill–Emmrich (WUE) approach and some of its generalizations. Then
we consider how this approach leads to the definition of a Stratonovich–Weyl (SW) quantizer.
This quantizer is used by some authors [8, 12–15] as the fundamental object defining the
deformation quantization. We argue that the axiomatic approach to the SW quantizer seems to
lead to severe difficulties (see also [16]). In section 3 some aspects of deformation quantization
on the cylinder within the WUE formalism are considered. It is shown how in this formalism
one can define the discrete SW quantizer given by Mukunda [17] and then also obtained in
[16, 18, 19].

2. WUE quantization and its generalization

First assume that the configuration space of a dynamical system is the Euclidean manifoldRn.
Then the phase space isR2n with the natural symplectic form

ω = dpα ∧ dxα α = 1, . . . , n (2.1)
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wherex1, . . . ,xn are the Cartesian coordinates onRn andp1, . . . ,pn denote the respective
momenta. According to the Weyl quantization rule [1, 5–9] iff = f (p,x) is a function on
R2n then the corresponding operator̂fW in the space of quantum statesH is given by

f̂W :=
∫
R2n

dp dx

(2πh̄)n
f (p,x)�̂(p,x) (2.2)

where dp dx := dp1 . . .dpn dx1 . . .dxn and the operator-valued function̂� = �̂(p,x) is
defined by

�̂ = �̂(p,x) := 2n
∫
Rn

dξ exp

(
−2ipξ

h̄

)
|x− ξ〉〈x + ξ | pξ := pαξα (2.3)

where�̂ is called theStratonovich–Weyl quantizer[8, 9, 12–15]. One can quickly show that{
�̂(p,x)

}† = �̂(p,x) (2.4)

Tr
{
�̂(p,x)

} = 1 (2.5)

and

Tr
{
�̂(p,x)�̂(p′,x′)

} = (2πh̄)nδ(p− p′)δ(x− x′). (2.6)

The last formula, (2.6), enables us to find the functionf = f (p,x) from its Weyl imagef̂W .
Indeed, equations (2.2) and (2.6) give

f = f (p,x) = Tr
{
�̂(p,x)f̂W

}
. (2.7)

Given any kets|ϕ〉, |ψ〉 ∈ H one obtains from (2.2) and (2.3)

〈ϕ|f̂W |ψ〉 =
∫
R2n

dp dx

(2πh̄)n
f (p,x)〈ϕ|�̂(p,x)|ψ〉

〈ϕ|�̂(p,x)|ψ〉 = 2n
∫
Rn

dξ exp

(
−2ipξ

h̄

)
ϕ(x− ξ) ψ(x + ξ) (2.8)

whereϕ(x) = 〈x|ϕ〉 andψ(x) = 〈x|ψ〉 denote the Schrödinger representation of|ϕ〉, and
|ψ〉, respectively, and the overbar denotes the complex conjugation. Finally,

〈ϕ|f̂W |ψ〉 = 1

(πh̄)n

∫
R2n×Rn

dp dxdξ f (p,x) exp

(
−2ipξ

h̄

)
ϕ(x− ξ)ψ(x + ξ). (2.9)

In particular, letf be a monomial in momenta

f = Xα1...αm(x)pα1 . . .pαm (2.10)

whereXα1...αm(x) is a totally symmetric tensor field on the configuration spaceRn. Substituting
(2.10) into (2.9), integrating with respect to dp and then by parts with respect to dξ we obtain

〈ϕ|f̂W |ψ〉 = 1

(πh̄)n

∫
Rn×Rn

dxdξXα1...αm(x)

(
− h̄

2i

)m
× ϕ(x− ξ)ψ(x + ξ)

∂m

∂ξα1 . . . ∂ξαm

{
(2π)nδ

(
2ξ

h̄

)}
=
(
h̄

2i

)m ∫
Rn

dxXα1...αm(x)
∂m

∂ξα1 . . . ∂ξαm

{
ϕ(x− ξ)ψ(x + ξ)

}
ξ=0. (2.11)
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Finally, the integration by parts brings (2.11) to the form

〈ϕ|f̂W |ψ〉 =
∫
Rn

dxϕ(x)

{(
h̄

i

)m m∑
k=0

1

2k

(
m

k

)

×(∂α1 . . . ∂αkX
α1...αkαk+1...αm(x)

)
∂αk+1 . . . ∂αm

}
ψ(x). (2.12)

Consequently, the Weyl image of the monomial (2.10) reads

f̂W =
(
h̄

i

)m m∑
k=0

1

2k

(
m

k

) (
∂α1 . . . ∂αkX

α1...αkαk+1...αm(x)
)
∂αk+1 . . . ∂αm . (2.13)

By the linear extension of (2.13) one obtains the Weyl image for an arbitrary polynomial in
momenta. As has been shown in [9, 20, 21] every operator ordering satisfying some natural
axioms can be obtained with the use of an operator of the form

A = A
(
−h̄ ∂2

∂pα∂xα

)
= 1 +

∞∑
k=1

Ak ·
(
−h̄ ∂2

∂pα∂xα

)k
Ak ∈ C. (2.14)

Given operatorA one defines

f̂ (A) :=
∫
R2n

dp dx

(2πh̄)n
(Af (p,x))�̂(p,x)

=
∫
R2n

dp dx

(2πh̄)n
f (p,x)�̂(A)(p,x) (2.15)

where

�̂(A)(p,x) := A�̂(p,x) (2.16)

is called thegeneralized Stratonovich–Weyl quantizer[9]. We have

Tr
{
�̂(A)(p,x)

} = 1 (2.17)

Tr
{
�̂(A)(p,x)�̂(A)(p′,x′)

} = (2πh̄)nA2

(
−h̄ ∂2

∂pα∂xα

)
δ(p− p′)δ(x− x′). (2.18)

Hence one obtains the generalization of the formula (2.7)

f = f (p,x) = A−2

(
−h̄ ∂2

∂pα∂xα

)
Tr
{
�̂(A)(p,x)f̂ (A)

}
. (2.19)

For the Weyl ordering we have

A = 1 (2.20)

and for the so-calledstandard ordering

A = exp

{
ih̄

2

∂2

∂pα∂xα

}
. (2.21)

In what follows we denote bŷfW and f̂S the Weyl and the standard ordering, respectively.
One can easily show that iff is the monomial (2.10) then

f̂S =
(
h̄

i

)m
Xα1...αm(x)∂α1 . . . ∂αm . (2.22)
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It is evident thatf̂ (A) is Hermitian for every real monomial of the form (2.10) if and only if

A = A. (2.23)

Our intent is to generalize the above considerations for the case when the configuration space
is ann-dimensional Riemannian manifold(M, g), whereg ∈ Symm(T ∗M ⊗ T ∗M) is the
metric onM. The phase space is the cotangent bundleT ∗M overM endowed with the natural
symplectic form

ω = dpα ∧ dqα α = 1, . . . , n (2.24)

whereq1, . . . , qn are coordinates inM andp1, . . . , pn, q
1, . . . , qn are the induced coordinates

(the proper Darboux coordinates) inT ∗M. Let f = f (p, q) be a function onT ∗M. The
question is to find a natural generalization of the Weyl quantization rule forR2n to the case
of T ∗M. It seems that the best answer to this question has been given by Underhill [10] and
then by Emmrich [11]. We follow them changing only the measure used in the integration
overTM. (Concerning the Underhill–Emmrich approach also see the distinguished papers
by Bordemannet al [22, 23] and Pflaum [24, 25]). A first glance at the formulae (2.2), (2.3)
and (2.9) shows that the main problem lies in a definition of the term exp(−2ipξ/h̄) when
M is no longer the Euclidean spaceRn. In the Underhill–Emmrich approach it is done by
the use of normal coordinates. Letq be any point ofM and Tq(M) and T ∗q (M) be the
tangent and cotangent space ofM at q, respectively. For anyξ = ξα(∂/∂qα)q ∈ Tq(M) and
p = pα(dqα)q ∈ T ∗q (M) we write as beforepξ := pαξ

α. For everyq ∈ M we choose a
normal neighbourhoodV ′q ⊂ Tq(M), an open ballKq ⊂ V ′q and some smaller neighbourhood
of q, Vq ⊂ Kq . Then one defines a cut-off functionχ = χ(q, ξ) ∈ C∞(TM) such that for
everyq ∈ M

χ(q, ξ) =
{

1 for ξ ∈ Vq
0 for ξ /∈ Kq .

(2.25)

Let expq : V ′q −→ Uq ⊂ M be the exponential map ofV ′q ontoUq . For any functionsϕ and
ψ onM and for every pointq ∈ M we define the functions8−q and9+

q onTq(M) by

8−q (ξ) =
{
χ(q,−ξ)ϕ(expq(−ξ)) for ξ ∈ Kq
0 for ξ /∈ Kq

9+
q (ξ) =

{
χ(q, ξ)ψ(expq ξ) for ξ ∈ Kq
0 for ξ /∈ Kq .

(2.26)

Let f = f (p, q) be a function onT ∗M. By analogy with (2.9) one assigns tof the following
operatorf̂W :

〈ϕ|f̂W |ψ〉 := 1

(πh̄)n

∫
T ∗M

dp dq f (p, q)
∫
Tq(M)

√
g(ξ) dξ exp

(
−2ipξ

h̄

)
8−q (ξ)9+

q (ξ).

(2.27)

Then we also have

〈ϕ|f̂W |ψ〉 =
∫
T ∗M

dp dq

(2πh̄)n
f (p, q)〈ϕ|�̂(p, q)|ψ〉

〈ϕ|�̂(p, q)|ψ〉 = 2n
∫
Tq(M)

√
g(ξ) dξ exp

(
−2ipξ

h̄

)
8−q (ξ)9+

q (ξ)

(2.28)
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whereg(ξ) stands for the determinant of the metric onM in the normal coordinates. Note that
Underhill [10] assumes the measure to be dξ and, consequentlyϕ andψ are half-densities.
On the other hand, Emmrich [11] deals with the measure

√
g(ξ) dξ and thereforeϕ andψ are

scalars. We assume that the wavefunctionsϕ andψ are scalars but the measure onV ′q ⊂ Tq(M)
is
√
g(ξ) dξ . The operator̂�(p, q) defined by (2.28) now plays the role of the SW quantizer.

The only problem is that botĥ� and f̂W depend on the cut-off functionχ(q, ξ). Thus one
should find the ‘optimal’ form ofχ . However, as was shown by Underhill [10], if the function
f is a polynomial with respect to momenta then̂fW does not depend onχ . Indeed, let

f = f (p, q) = Xα1...αm(q)pα1 . . . pαm. (2.29)

Substituting (2.29) into (2.27), integrating with respect to dp and then, by parts, with respect
to dξ one obtains

〈ϕ|f̂W |ψ〉 = 1

(πh̄)n

∫
T ∗M

dp dq Xα1...αm(q)

∫
Tq(M)

√
g(ξ) dξ

(
− h̄

2i

)m
×
{

∂m

∂ξα1 . . . ∂ξαm
exp

(
−2ipξ

h̄

)}
8−q (ξ)9+

q (ξ)

=
(
h̄

2i

)m ∫
M

√
g(q) dq Xα1...αm(q)

{
∂m

∂ξα1 . . . ∂ξαm
D̃(q, ξ)

}
ξ=0

D̃(q, ξ) :=
√
g(ξ)√
g(q)

8−q (ξ)9+
q (ξ).

(2.30)

However, it is an easy matter to show that (see Petrov [26]){
∂k

∂ξα1 . . . ∂ξαk
8−(ξ)

}
ξ=0

= (−1)k∇(α1 . . .∇αk) ϕ(q){
∂k

∂ξα1 . . . ∂ξαk
9+(ξ)

}
ξ=0

= ∇(α1 . . .∇αk)ψ(q)
(2.31)

where∇α1 := ∇∂/∂qα1 , . . . etc, and the bracket(α1 . . . αk) stands for the symmetrization.
Finally, inserting (2.31) into (2.30) and integrating by parts one arrives at the following result
which is a generalization of the one obtained by Bordemannet al [23]:

〈ϕ|f̂W |ψ〉 =
∫
M

√
g(q) dq ϕ(q)f̂Wψ(q)

f̂W =
(
h̄

i

)m m∑
k=0

(
m

k

) m−k∑
j=0

(
m− k
j

)
1

2k+j

× (∇α1 . . .∇αj X̃α1...αj αj+1...αm−k (q)
)∇αj+1 . . .∇αm−k

=
m∑
k=0

(
h̄

2i

)k (
m

k

){(
h̄

i

)m−k m−k∑
j=0

(
1

2

)j (
m− k
j

)

× (∇α1 . . .∇αj X̃α1...αj αj+1...αm−k (q)
)∇αj+1 . . .∇αm−k

}

X̃α1...αj αj+1...αm−k (q) := Xβ1...βkα1...αj αj+1...αm−k (q)

{
∂k

∂ξβ1 . . . ∂ξβk

√
g(ξ)√
g(q)

}
ξ=0

.

(2.32)

The term corresponding tok = 0 is exactly the operator given in [22, 23]. (Compare also with
(2.13).) Thus one concludes that iff = f (p, q) is a monomial of the form (2.29) then̂fW
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given by (2.32) is independent of the cut-off functionχ . By linearity this is also true for any
polynomial with respect to momenta.

Examples. (Compare with [10, 11, 23].)

(a) Assume

f = Xα(q)pα (2.33)

then

f̂W = h̄

i

[
Xα(q)∇α + 1

2

(∇αXα(q))]. (2.34)

(b) f = Xαβ(q)pαpβ (2.35)
Here

f̂W =
(
h̄

i

)2[
Xαβ(q)∇α∇β +

(∇αXαβ(q))∇β + 1
4

(∇α∇βXαβ(q)) + 1
12X

αβ(q)Rαβ(q)
]

(2.36)

whereRαβ(q) is the Ricci tensor onM

Rαβ = Rγαγβ = ∂γ 0γαβ − ∂β0γαγ + 0γγ δ0
δ
αβ − 0γβδ0δαγ . (2.37)

(c) Let

f = Xαβ(q)pαpβ + ih̄
(∇αXαβ(q))pβ − 1

4h̄
2
(∇α∇βXαβ(q)) + 1

12h̄
2Xαβ(q)Rαβ(q).

(2.38)

Then

f̂W =
(
h̄

i

)2

Xαβ(q)∇α∇β. (2.39)

Now we are in a position to consider an important problem. As has been mentioned, the
operator̂�(p, q) given by (2.28) is the SW quantizer within the WUE formalism. Of course,
�̂(p, q) depends on the cut-off functionχ(q, ξ). Therefore, the question is whether there
existsχ(q, ξ) such that the usual axioms of the SW quantizer [8, 13–15], i.e.

{�̂(p, q)}† = �̂(p, q) (2.40)

Tr{�̂(p, q)} = 1 (2.41)∫
T ∗M

dp′ dq ′

(2πh̄)n
f (p′, q ′)Tr

{
�̂(p, q)�̂(p′, q ′)

}
= f (p, q)

⇐⇒ Tr
{
�̂(p, q)f̂W

} = f (p, q) (2.42)

are satisfied by the operator̂�(p, q) defined by (2.28) (see (2.4)–(2.7)). It is evident that the
condition (2.40) holds for anyχ(q, ξ). Now to check (2.41) we take a complete orthonormal
system of functions{ϕj } onM,∫

M

√
g(q) dq ϕk′(q)ϕk(q) = δkk′∑

k

ϕk(q ′) ϕk(q) = δ(q − q ′)√
g(q)

.

(2.43)
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It is an easy matter to observe that without any loss of generality one can use the exponential
functions in the tangent spaceTq(M)

ϕs(ξ) = 1

(
√

2π)n 4
√
g(ξ)

exp(isξ)

s = (s1, . . . , sn) ∈ Z× · · · × Z.
(2.44)

Consequently, we obtain

Tr{�̂(p, q)} =
∑

s∈Z×···×Z
〈ϕs |�̂(p, q)|ϕs〉

= 2n
∫
Tq(M)

√
g(ξ) dξ

χ(q,−ξ)χ(q, ξ)
(2π)n 4

√
g(−ξ) 4

√
g(ξ)

(2π)nδ(2ξ) = 1. (2.45)

Remark. In (2.44) and (2.45) it is assumed thatKq ⊂ [−π, π ] × · · · × [−π, π ]. In other
cases we should change the period of the exponential functions but the final result of (2.45)
holds true.

Thus (2.41) is fulfilled for every cut-off functionχ(q, ξ). Consider now the condition
(2.42). To this end we use example (c). Inserting the operator (2.39) into (2.42), using as
before the exponential functions (2.44) and also employing some formulae from the theory of
the normal coordinate systems [26] one arrives at the following result:

f (p, q)− Tr
{
�̂(p, q)f̂W

} = 1
3h̄

2Xαβ(q)Rαβ(q) (2.46)

wheref = f (p, q) is defined by (2.38). As (2.46) holds true for an arbitraryχ(q, ξ) the
axiom (2.42) cannot be satisfied. One can quickly show that the analogous result to (2.46)
holds true when the Emmrich measure

√
g(q) dξ is considered. Thus we conclude that:in

general the axiom(2.42)is not satisfied within the WUE formalism for any choice of the cut-off
functionχ(q, ξ). Therefore, from the WUE formalism point of view the axiomatic approach
to the definition of the SW quantizer seems to be questionable. (See also [16, 19] and the
next section of the present paper.) Finally, let us consider the problem of different operator
orderings. One can quickly find that in the Euclidean case if we perform a point transformation

qα = qα(xβ) pα =
∂xβ

(
qγ
)

∂qα
pβ (2.47)

wherex1, . . . ,xn are the Cartesian coordinates andp1, . . . ,pn the corresponding momenta,
then

−h̄ ∂2

∂pα∂xα
= −h̄

{
∂2

∂pα∂qα
+ pγ0

γ

αβ(q)
∂2

∂pα∂pβ
+ 0βαβ(q)

∂

∂pα

}
(2.48)

where0αβγ are the Christoffel symbols with respect to the coordinatesqα. Hence, it is natural
to generalize the objectA defining the operator ordering in the Euclidean case (see (2.14)) to
the following one:

A = A(1) = 1 +
∞∑
k=1

Ak1
k Ak ∈ C

1 := −h̄
(

∂2

∂pα∂qα
+ pγ0

γ

αβ

∂2

∂pα∂pβ
+ 0βαβ

∂

∂pα

) (2.49)
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when the configuration space is ann-dimensional Riemannian manifold(M, ds2). (The
operator1 was also found by Bordemannet al [22, 23].) Consequently, we now have

〈ϕ|f̂ (A)|ψ〉 =
∫
T ∗M

dp dq

(2πh̄)n
(Af (p, q))〈ϕ|�̂(p, q)|ψ〉

=
∫
T ∗M

dp dq

(2πh̄)n
f (p, q)〈ϕ|�̂(A)(p, q)|ψ〉 (2.50)

where the generalized SW quantizer�̂(A)(p, q) is defined by

�̂(A)(p, q) := A�̂(p, q). (2.51)

In particular, for thegeneralized standard orderingone puts [22]

A = exp
{

1
2ih̄1

}
(2.52)

and for the monomial (2.29) we obtain

f̂S := f̂ (A) =
(
h̄

i

)m m∑
k=0

1

2k

(
m

k

)
X̃α1...αm−k (q)∇α1 . . .∇αm−k . (2.53)

The term withk = 0 corresponds exactly to the operator in standard ordering in the case of
the Emmrich measure [22].

3. Quantization on the cylinder

Consider a simple dynamical system consisting of one particle on the circleS1. The phase
space of this system is the cylinderR×S1. The deformation quantization for this case might
seem to be a simple modification of the Euclidean case. However, it is not because of the
non-trivial topology ofS1. In particular, one arrives at the conclusion that if the deformation
quantization on the cylinderR×S1 is to give ‘physical’ results then the classical phase space
should be quantized to be ¯hZ×S1 [16–19]. Here we consider some aspects of the deformation
quantization on the cylinder using the Weyl–Underhill–Emmrich quantization rule. In the
present case the configuration spaceM = S1, thenT ∗M = R×S1 andTqM = R. For the
coordinateq we use the angleθ ,−π 6 θ < π . The complete orthonormal system ofL2(S1)

is given by

ϕk = 1√
2π

exp(ikθ) k ∈ Z. (3.1)

For simplicity we assume that the cut-off functionχ(θ, ξ) is symmetric with respect toξ

χ(θ, ξ) = χ(θ,−ξ) ∀ θ ∈ [−π, π [. (3.2)

The SW quantizer̂�(p, θ) defined by (2.28) now reads

〈ϕk|�̂(p, θ)|ϕk′ 〉 = 1

π
exp

{
i(k′ − k)θ} ∫ ∞

−∞
dξ χ2(θ, ξ)exp

{
i

(
k + k′ − 2p

h̄

)
ξ

}
. (3.3)

One can quickly check that according to the general formula (2.45)

Tr{�̂(p, θ)} =
∑
k∈Z
〈ϕk|�̂(p, θ)|ϕk〉 = 1 (3.4)

for arbitraryχ . Let f = f (p, θ) be a monomial

f (p, θ) = X(θ)pm (3.5)
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then∫
R×S1

dp′ dθ ′

2πh̄
f (p′, θ ′)Tr

{
�̂(p, θ)�̂(p′, θ ′)

} =∑
k∈Z
〈ϕk|�̂(p, θ)f̂W |ϕk〉

=
∫ ∞
−∞

dξ χ2(θ, ξ)exp

(
−2ipξ

h̄

)(
h̄

2i

)m
∂m

∂ξm
(X(θ + ξ)δ(ξ)) = X(θ)pm.

(3.6)

By the linearity of the integral (2.42) with respect tof one concludes thatthe axiom(2.42)is
now satisfied for a functionf = f (p, θ) being an arbitrary polynomial in the momentump.
If we want the axiom (2.42) to hold for any function on the cylinder then Tr

{
�̂(p, θ)�̂(p′, θ ′)

}
should be equal to 2πh̄δ(θ − θ ′)δ(p − p′). Performing simple manipulations, remembering
also thatχ(θ, ξ) = 0 for ξ 6= ]−π, π [ (i.e.Kθ ⊂ ]−π, π [) one finds

Tr
{
�̂(p, θ)�̂(p′, θ ′)

} = 2δ(θ − θ ′)
∫ ∞
−∞

dξχ4(θ, ξ)exp

{
2i

h̄
(p′ − p)ξ

}
+4(δ(θ − θ ′ − π) + δ(θ − θ ′ + π))

∫ ∞
−∞

dξχ2(θ, ξ)χ2(θ ′, ξ + π)

× cos

{
2

h̄
(p′ − p + π)ξ

}
. (3.7)

Hence, asχ(θ, ξ) has a compact support with respect toξ the formula (3.7) never gives
2πh̄δ(θ − θ ′)δ(p − p′). Consequently,the axiom(2.42)cannot be satisfied for an arbitrary
function on the cylinder. (Note that this is always the case if the configuration spaceM is such
that for some pointq of M the normal coordinates atq cannot be extended to all the tangent
spaceTq(M).) We must mention here that in the important works [27] the SW quantizer on
the cylinder satisfying the axioms (2.40)–(2.42) has been found. However, this SW quantizer
has a disadvantage (as does our SW quantizer (3.3)), that is, it does not fulfil the condition:
f̂W = f (p̂) for an arbitrary functionf = f (p), which could be expected for a particle on a
circle. The same occurs in the interesting approach of Alcalde [28] where the notion of an SW
quantizer is not used. In fact, as is known from [16] the violation of the above condition will
always appear unless we consider a ‘quantization’ of the classical cylindrical phase space. This
quantization in the WUE formalism can be obtained by some limiting process. Namely, let
{χj (θ, ξ)}j∈N be a series of cut-off functions such that for everyj ∈ N and everyθ ∈ [−π, π [

06 χj (θ, ξ) 6 1 χj (θ, ξ) = 0 for ξ /∈ ]− 1
2π,

1
2π [ (3.8)

and

lim
j→∞

∫ π/2

−π/2
dξ (χj (θ, ξ))

mf (ξ) =
∫ π/2

−π/2
dξ f (ξ) (3.9)

for everym ∈ N and every continuous functionf = f (ξ) (see Vladimirov [29], section 2.2).
Assuming that the momentump = nh̄, n ∈ Z, using (3.8) and (3.9) one quickly finds that
(3.3) leads to

lim
j→∞
〈ϕk|�̂j (kh̄, θ)|ϕk′ 〉 = 1

π
exp{i(k′ − k)θ}

lim
j→∞

∫ π/2

−π/2
dξχ2

j (θ, ξ)exp{i(k + k′ − 2n)ξ} = 〈ϕk|�̂(n, θ)|ϕk′ 〉
(3.10)
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where�̂(n, θ) is thediscrete Stratonovich–Weyl quantizer for the cylinderfound by Mukunda
[17] and also given in [16, 18, 19]. Then from (3.7) with (3.8) and (3.9) we have

lim
j→∞

Tr
{
�̂j (n, θ)�̂j (n

′, θ ′)
} = 2πδn,n′δ(θ − θ ′) (3.11)

(compare with [16]). Finally, note that the discrete SW quantizer (3.10) givesf̂W = f (p̂) for
every functionf = f (p) as is expected.
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